Home
Class 11
MATHS
cos^(3)xsin2x=sum(x=0)^(n)a(r)sin(rx)AA ...

`cos^(3)xsin2x=sum_(x=0)^(n)a_(r)sin(rx)AA x inR` , then

A

`n=5,a_(1)=1//2`

B

`n=5,a_(1)=1//4`

C

`n=5,a_(2)=1//8`

D

`n=5,a_(2)=1//4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(1)=int_(0)^(pi//2)(cos^(2)x)/(1+cos^(2)x)dx,I_(2)=int_(0)^(pi//2)(sin^(2)x)/(1+sin^(2)x)dx , I_(3)=int_(0)^(pi//2)(1+2cos^(2)x.sin^(2)x)/(4+2cos^(2)xsin^(2)x)dx , then

The integral (sin^(2)xcos^(2)x)/((sin^(5)x+cos^(3)xsin^(2)x+sin^(3)xcos^(2)x+cos^(5)x)^(2))dx is equal to

The mean and variance of n observations x_(1), x_(2), x_(3),……..,x_(n) are 5 and 0 respectively. If sum_(i=1)^(n) x_(i)^(2) = 400 , then the value of n is equal to

If (1+sin2x)/(1-sin2x)=cot^(2)(a+x)AA x inR~(npi+(pi)/(4)), n in N , then a can be

0 lt phi lt (pi)/(2) , x= underset(n=0) overset(infty )sum cos ^(2nphi), y = underset(n=0)overset(infty)sum sin ^(2nphi) and z = underset(n=0) overset(infty)sum cos ^(2n) phi sin ""^(2)n phi , then : a) xyz =xz+y b) xyz =xy +z c) xyz =x+y +z d) xyz=yz +x

If Delta (x)= |(1,cos x,1-cos x),(1+sin x ,cos x,1+sin x-cos x),(sin x,sin x,1)| , then int_(0)^(pi//2) Delta (x) dx= a) (-1)/(2) b) (1)/(2) c)1 d) -1

Prove that overset(n) underset(r=0)Sigma^(n)C_(r) sin rx cos (n-r)x=2^(n-1) sin (nx) .

Let (1+x)^(n) = 1+a_(1)x + a_(2)x^(2) + ……+ a_(n)x^(n) . If a_(1), a_(2) and a_(3) are in AP, then the value of n is