Home
Class 11
MATHS
If cos^(2)alpha-sin^(2)alpha=tan^(2)bet...

If `cos^(2)alpha-sin^(2)alpha=tan^(2)beta` , then prove thta `tan^(2)alpha=cos^(2)beta-sin^(2)beta` .

Text Solution

Verified by Experts

The correct Answer is:
`=cos^(2)beta-sin^(2)beta`
Promotional Banner

Similar Questions

Explore conceptually related problems

If (cos^4 alpha)/(cos^2beta)+(sin^4alpha)/(sin^2beta)=1 ,then prove that sin^4alpha+sin^4beta=2sin^2alphasin^2beta .

If (cos^4 alpha)/(cos^2beta)+(sin^4alpha)/(sin^2beta)=1 ,then prove that (cos^4beta)/(cos^2alpha)+(sin^4beta)/(sin^2alpha)=1

If alpha ne beta, alpha^(2)=5 alpha-3, beta^(2)=5beta-3 , then the equation having (alpha)/(beta) and (beta)/(alpha) as its roots is

If a line makes alpha,beta,gamma with x,y,z axis respectively, then prove that sin^2alpha+sin^2beta+sin^2gamma=2

If 2alpha=-1-isqrt(3)and2beta=-1+isqrt(3) , then find 5alpha^(4)+5beta^(4)+7alpha^(-1)beta^(-1)

If alpha, beta, gamma are roots of the equation x^(3)+px^(2)+qx+r= 0 , then prove that (1-alpha^(2))(1- beta^(2)) (1- gamma^(2))=(1+q)^(2)-(p+r)^(2)

If cos alpha+cos beta=1/3 and sin alpha+sin beta=1/4 ,show that tan((alpha+beta)/2)=3/4

If A_(alpha)=[[cos alpha, sin alpha],[ -sin alpha , cos alpha]] , then prove that i) A_(alpha ). A_(beta)=A_(alpha + beta) ii) (A_alpha)^n=[[cos n alpha, sin n alpha],[ -sin n alpha, cos n alpha]] for every positive integer n .