Home
Class 11
MATHS
Prove that these two angles are not cote...

Prove that these two angles are not coterminal `(15pi)/(4),(17pi)/(4)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that these two angles are not coterminal. 1000^(@),270^(@)

State if the given angles are coterminal . alpha=(17pi)/(36),beta=(161pi)/(36)

Find the value of cot((-15pi)/4)

If the sides of the triangle are p,q,sqrt(p^(2)+q^(2)+pq,) then the greatest angle is : a) (pi)/(2) b) (5pi)/(4) c) (2pi)/(3) d) (7pi )/(4)

Evalaute the sine , cosine , and tangent of each of the following angles : 300^(@),-405^(@),(7pi)/(6),(11pi)/(4)

Prove that (costheta)/(1+sintheta)=tan((pi)/(4)-(theta)/(2))

if sin ((pi)/(4) cot theta ) = cos ((pi)/(4) tan theta ), then theta is equal to : a) 2 n pi + (pi)/(4) b) 2n pi pm (pi)/(4) c) 2 n pi - (pi)/(4) d) n pi + (pi)/(4)

Prove that the function f(x)=logsinx is strictly increasing in (0,pi/2) and strictly decreasing in (pi/2,pi)

Find the value of the trigonometric functions. cot (-(15pi)/4)

If (-pi)/(2) lt theta lt (pi)/(2) and theta ne +- (pi)/(4) , then the value of cot((pi)/(4) + theta)cot((pi)/(4)-theta) is