Home
Class 11
MATHS
In triangle ABC , prove that sinA=s...

In triangle ABC , prove that
`sinA=sin(B+C)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, Prove that asin(B-C)+bsin(C-A)+csin(A-B)=0

If A+B+C =pi prove that sin2A=-sin(2B+2C)

For any triangle ABC, prove that sin((B-C)/2)=(b-c)/acos(A/2)

In any triangle ABC, prove that tan((B-C)/2)=(b-c)/(b+c) cot frac (A)(2)

For any triangle ABC, prove that (a+b)/c=cos((A-B)/2)/sin(C/2)

For any DeltaABC , prove that (sin(B-C))/(sin(B+C))=(b^2-c^2)/(a^2)

In triangle 'ABC, angle B=90 degree . BD' is perpendicular to 'AC'. a) If 'angle A=x degree', find the measures of 'angle C' and 'angle ABD' b) Write the ratios of the sides opposite to the equal angles in triangle 'ABD' and triangle ABC. c) Prove that 'AB^2=AD x AC'.

If in a triangle ABC , a= 5 , b=4 , A = (pi)/(2) +B, then C: