Home
Class 11
MATHS
If A+B+C =pi prove that sin2A=-sin(2...

If `A+B+C =pi` prove that `sin2A=-sin(2B+2C)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC , prove that sinA=sin(B+C)

If A+B+C=pi . Then prove that cosA=-cos(B+C)

If tan(A+B)=3tanA , prove that sin(2A+B)=2sinB

For any DeltaABC , prove that (sin(B-C))/(sin(B+C))=(b^2-c^2)/(a^2)

If A+B+C=180^@ ,prove that cos^2A+cos^2B+cos^2C=1-2cos Acos B cos C .

For any DeltaABC , prove that sin ((B-C)/2)=(b-c)/a cos (A/2)

For any DeltaABC , prove that (a+b)/c=cos((A-B)/2)/sin(c/2)

For any triangle ABC, prove that (a+b)/c=cos((A-B)/2)/sin(C/2)

For any triangle ABC, prove that sin((B-C)/2)=(b-c)/acos(A/2)

If sinA=sinBand cosA=cosB , then prove that " sin "(A-B)/(2)=0 .