Home
Class 11
MATHS
Prove that "sin"^(2)(pi)/(18)+"sin"^(2...

Prove that `"sin"^(2)(pi)/(18)+"sin"^(2)(pi)/(9)+"sin"^(2)(7pi)/(18)+"sin"^(2)(4pi)/(9)=2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(2)""(pi)/(8) + sin^(2)""(3pi)/(8) + sin^(2)""(5pi)/(8) + sin^(2) ""(7pi)/(8) is equal to a) (1)/(8) b) (1)/(4) c) (1)/(2) d)2

Prove that sin^2(pi/8)+sin^2((3pi)/8)+sin^2((5pi)/8)+sin^2((7pi)/8)=2

Prove that sin^2(pi/6)+cos^2(pi/3)-tan^2(pi/4)=-1/2

Prove that 3sin(pi/6)sec(pi/3)-4sin((5pi)/6)cot(pi/4) =1

Show that sin ((pi)/(2)-x)=cos x

Prove that 2sin^2(pi/6)+cosec^2((7pi)/6)cos^2(pi/3)=3/2

Prove that 2sin^2((3pi)/4)+2cos^2(pi/4)+2sec^2(pi/3)=10

Show that 2sin^2 (pi/6)+sin^2 (pi/4)=1

One of the value of ("cos"(pi)/(6) +i "sin"(pi)/(6))^((1)/(2)) + ("cos"(pi)/(6)- i "sin"(pi)/(6))^((11)/(2)) is

Prove that tan^2frac(pi)(4)+sin^2frac(pi)(6)-cos^2frac(pi)(3)=1