Home
Class 11
MATHS
If A+B+C=pi prove that (cosA)/(sinBsin...

If `A+B+C=pi` prove that `(cosA)/(sinBsinC)+(cosB)/(sinCsinA)+(cosC)/(sinAsinB)=2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C =pi prove that sin2A=-sin(2B+2C)

Prove that cosAsin(B-C)+cosBsin(C-A)+cosCsin(A-B)=0

If A+B+C=pi . Then prove that cosA=-cos(B+C)

Prove that (sin(3A)/sinA)+(cos(3A)/cosA)=4cos2A

Prove that (cosA-cosB)^2+(sinA-sinB)^2=4sin^2((A-B)/2)

Prove that sinA/(1+cosA)=tan(A/2)

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x) = cot^2x

If A+B+C=180^@ ,prove that cos^2A+cos^2B+cos^2C=1-2cos Acos B cos C .

For any DeltaABC , prove that (sin(B-C))/(sin(B+C))=(b^2-c^2)/(a^2)