Home
Class 11
MATHS
The equation sin^(2)theta=(x^(2)+y^(2)...

The equation `sin^(2)theta=(x^(2)+y^(2))/(2xy)` is possible if

A

x=y

B

x=-y

C

2x =y

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x and y be real, show that the equation sec ^(2) theta=(4 xy)/((x+y)^(2)) is possible only when x=y

Is the equation sec^(2)theta=(4xy)/((x+y)^(2)) possible for real values of x and y ?

Solve : dy/dx=(x^2+y^2)/(2xy)

The angle between the pair of straight lines y^(2) sin ^(2) theta -xy sin ^(2) theta +x^(2) (cos^(2) theta-1) =0 is : a) (pi)/(3) b) (pi)/(4) c) (pi )/(6) d) (pi)/(2)

Find the values of theta and p, if the equation x cos theta + y sin theta = p is the normal form of sqrt 3 x + y + 2 = 0