Home
Class 11
MATHS
The expression (tan(x-(pi)/(2))*cos((...

The expression `(tan(x-(pi)/(2))*cos((3pi)/(2)+x)-sin^(3)((7pi)/(2)-x))/(cos(x-(pi)/(2))*tan((3pi)/(2)+x))` simplifies to

A

`(1+cos^(2)x)`

B

`sin^(2)x`

C

`-(1+cos^(2)x)`

D

`cos^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that sin ((pi)/(2)-x)=cos x

Show that cos ^(2) x+cos ^(2)(x+(pi)/(3))+cos ^(2) (x-(pi)/(3))=(3)/(2)

cos (2pi-x) =

Prove that cos((3pi)/4+x)-cos((3pi)/4-x)= -sqrt2 sinx

Show that cos ((pi)/(2)-x)=sin x

int_-(pi/2)^(pi/2) x sin x d x

Evaluate int_(0)^(4pi)(dx)/(cos^(2)x(2+tan^(2)x)) .

The area bounded by y= sin^(2)x, x = (pi)/(2) and x=pi is a) (pi)/(2) b) (pi)/(4) c) (pi)/(8) d) (pi)/(16)

Evaluate cos^2(pi/8)+cos^2((3pi)/8)+cos^2((5pi)/8)+cos^2((7pi)/8)=2