Home
Class 11
MATHS
Prove that 2cos(pi/13)cos((9pi)/13)+cos(...

Prove that `2cos(pi/13)cos((9pi)/13)+cos((3pi)/13)+cos((5pi)/13)=0`

A

`-1`

B

0

C

1

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos((3pi)/2+x)cos(2pi+x)[cot((3pi)/2-x)+cot(2pi+x)]=1

Prove that 2sin^2(pi/6)+cosec^2((7pi)/6)cos^2(pi/3)=3/2

prove that cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx

Evaluate cos^2(pi/8)+cos^2((3pi)/8)+cos^2((5pi)/8)+cos^2((7pi)/8)=2

Prove that cos ^(4) (pi)/(8)+cos ^(4) (3 pi)/(8)+cos ^(4) (5 pi)/(8)+cos ^(4) (7 pi)/(8)=(3)/(2)

Prove that (1+"cos"(pi)/(8))(1+"cos"(3pi)/(8))(1+"cos"(5pi)/(8))(1+"cos"(7pi)/(8))=(1)/(8) .

Evaluate cos^2(pi/8)+cos^2((3pi)/8)

Prove that cos^-1(4/5)+cos^-1(12/13)=cos^-1(33/65) .

Prove that (cos(pi+x)cos(-x))/(sin(pi-x)cos(pi/2+x) = cot^2x

Prove that cos((3pi)/4+x)-cos((3pi)/4-x)= -sqrt2 sinx