Home
Class 11
MATHS
If A ,B , C are angles of a triangl...

If A ,B , C are angles of a triangle , then `"2sin"(A)/(2)"cosec"(B)/(2)"sin"(C)/(2)-"sinA cot"(B)/(2)-cosA` is

A

independent of A,B,C

B

function of A,B

C

function of C

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

tan((A+B)/(2))="cot"(C)/(2)

For any triangle ABC, prove that (a+b)/c=cos((A-B)/2)/sin(C/2)

In quadrilateral ABCD if sin((A+B)/(2))cos((A-B)/(2))+sin((C+D)/(2))cos((C-D)/(2))=2 , then find the value of "sin"(A)/(2)"sin"(B)/(2)"sin"(C)/(2)"sin"(D)/(2) .

For any triangle ABC, prove that sin((B-C)/2)=(b-c)/acos(A/2)

In triangle ABC , "tan"(A)/(2),"tan"(B)/(2),"tan"(C)/(2) are in H.P ., then the value of "cot"(A)/(2)xx"cot"(C)/(2) is equal to

In triangle ABC, the value of (cot""A/2cot ""B/2-1)/(cot ""A/2 cot ""B/2) is

If A,B,C are the angle of a triangle then the value of determinant |(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C)| is a) pi b) 2lambda c)0 d)None of these

If A,B, and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C)|=0, then triangle ABC is a)Isosceles b)Equilateral c)Right - angled d)None of these

In triangle ABC , prove that sinA=sin(B+C)