Home
Class 11
MATHS
If A and B are acute positive angle...

If A and B are acute positive angles satisfying the equalities `3sin^(2)A+2sin^(2)B=1and3sin2A-2sin2B=0` , then A+2B =

A

`pi`

B

`(pi)/(2)`

C

`(pi)/(4)`

D

`(pi)/(6)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin(A+B)sin(A-B)=sin^2A-sin^2B

If A,B, and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C)|=0, then triangle ABC is a)Isosceles b)Equilateral c)Right - angled d)None of these

The value of theta lying between theta = 0 and theta = pi//2 and satisfying the equation |(1+sin^(2)theta,cos^(2)theta,4sin4theta),(sin^(2)theta,1+cos^(2)theta,4sin4theta),(sin^(2)theta,cos^(2)theta,1+4sin4theta)|=0 are a) 3pi//24 b) 5pi//24 c) 11pi//24 d) pi//24

If sin A + cos 2A = 1/2 and cos A +sin 2A =1/3 , then find the value of sin 3A .

The value of x satisfying the equation abs{:(cos 2x, sin 2x, sin 2x),(sin 2x, cos 2x, sin 2x),(sin 2x , sin 2x, cos2x):}=0 and x in [0, (pi)/(4) ] is a) (pi)/(4) b) (pi)/(2) c) (pi)/(16) d) (pi)/(8)

If A,B,C are the angle of a triangle then the value of determinant |(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C)| is a) pi b) 2lambda c)0 d)None of these

Prove that (sin x-sin 3 x)/(sin ^(2) x-cos ^(2) x)=2 sin x