Home
Class 11
MATHS
(1)/(tan3A-tanA)-(1)/(cot3A-cotA)=...

`(1)/(tan3A-tanA)-(1)/(cot3A-cotA)`=

A

tan A

B

tan 2A

C

cot A

D

cot 2A

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(-1)(1/2tan2A) +tan^(-1)(cotA)+tan^(-1)(cot^3A), for 0 lt A lt pi//4 is a) tan^(-1)2 b) tan^(-1)(cotA) c) 4 tan^(-1)(1) d) 2 tan^(-1)(2)

If tan(A+B)=(tanA+tanB)/(1-tanAtanB) , then by applying the result tantheta=(1/cottheta) prove that cot(A+B)=(cotAcotB-1)/(cotA+cotB)

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx is equal to a) (1)/(sqrt(3))tan^(-1)((x)/(sqrt(3)(x+1))) b) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(3(x+1)))) c) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(x+1))) d)None of these

The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as :

if sin4A=4sinAcos^3A-4cosAsin^3A Dividing numerator and denominator on the R.H.S. by cos^4A prove that sin4A=(4tanA(1-tan^2A))/(1+tan^2A)^2

Given that tan(A+B)=(tanA+tanB)/(1-tanAtanB) by writing A+B+C=(A+B)+C prove that tan(A+B+C)=(tanA+tanB+tanC-tanAtanBtanC)/(1-(tanAtanB+tanBtanC+tanCtanA)

cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cos alpha))=x , then sin x is equal to a) tan^2""alpha/2 b) cot^2""alpha/2 c) tan alpha d) cot ""alpha/2

If tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x , then x =

Given that tan(A+B)=(tanA+tanB)/(1-tanAtanB) if A+B+C=0^@ prove that tanA+tanB+tanC=tanAtanBtanC hence prove that tan(x-y)+tan(y-z)+tan(z-x)=tan(x-y)tan(y-z)tan(z-x)