Home
Class 11
MATHS
The minimum value of 2^(sinx)+2^(cosx) ...

The minimum value of `2^(sinx)+2^(cosx)` is equal to

A

`2^(1-sqrt(2))`

B

`2^(1-1sqrt(2))`

C

`2^(sqrt(2-1))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(cos2x)/(cosx)dx is equal to

Find the maximum value of sinx+cosx

The minimum value of the function m ax (x, x^(2)) is equal to

The minimum value of the function f(x)=(sinx)/(sqrt(1-cos^(2))x)+(cosx)/(sqrt(1-sin^(2)x))+(tanx)/(sqrt(sec^(2)x-1))+(cotx)/(sqrt(cosec^(2)x-1)) whenever it is defined is

The minimum value of the function f(x)=(1)/(sinx+cosx) in the interval [0,(pi)/(2)] is

Evaluate int(x-sinx)/(1-cosx)dx .

Find the absolute maximum value and the absolute minimum value of the following functions in the given intervals f(x)=sinx+cosx ,x in [0,pi]

If (sinx)/(siny)=(1)/(2),(cosx)/(cosy)=(3)/(2) , where x,y in (0,(pi)/(2)) , then the value of tan (x+y) is equal to

int(ln(tanx))/(sinx*cosx)dx , is equal to

With out using triangle,find the value of (sinx+cosx)/(sinx-cosx) if tanx=3/4 .