Home
Class 11
MATHS
Given a(1)cosalpha(1)+a(2)cosalpha(2)+....

Given `a_(1)cosalpha_(1)+a_(2)cosalpha_(2)+...+a_(n)cosalpha_(n)=0anda_(1)cos(alpha_(1)+theta)+a_(2)cos(alpha_(2)+theta)+...+a_(n)cos(alpha_(n)+theta)=0(theta ne kpi)` , then value of `a_(1)cos(alpha_(1)+lambda)+a_(2)cos(alpha_(2)+lambda)+...+a_(n)cos(alpha_(n)+lambda)` is

A

`theta-lambda`

B

`theta+lambda`

C

`lambda`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

if cos theta_(1) + cos theta_(2) + cos theta_(3)= sin theta_(1) + sin theta_(2) + sin theta_(3)= 0 , then the value of cos (theta_(1) + theta_(2)) + cos (theta_(2) + theta_(3)) + cos (theta_(3) + theta_(1)) is

If |(sin^(2)alpha,cos^(2)alpha),(cos^(2)alpha,sin^(2)alpha)|=0,alphain(0,pi) , then the values of alpha are

The maximum value of (cosalpha_(1))(cosalpha_(2))...(cosalpha_(n)) under the restrictions 0lealpha_(1),alpha_(2),...,alpha_(n)lepi//2and(cotalpha_(1))(cotalpha_(2))...(cotalpha_(n))=1 is

If cot alpha cot beta=2 , show that (cos (alpha+beta))/(cos (alpha-beta))=(1)/(3)

Prove that |(a_(1)alpha_(1)+b_(1)beta_(1),a_(1)alpha_(2)+b_(1)beta_(2),a_(1)alpha_(3)+b_(1)beta_(3)),(a_(2)alpha_(1)+b_(2)beta_(1), a_(2)alpha_(2)+b_(2)beta_(2), a_(2)alpha_(3)+b_(2)beta_(3)),(a_(3)alpha_(1)+b_(3)beta_(1), a_(3)alpha_(2)+b_(3)beta_(2),a_(3)alpha_(3)+b_(3)beta_(3))|=0

If a_1 = 4 and a_(n+1) = a_(n) + 4n for n ge 1 , then the value of a_(100) is

If costheta=(cosalpha-cosbeta)/(1-cosalphacosbeta) . prove that one of the value of "tan"(theta)/(2) is "tan"(alpha)/(2)"cot"(beta)/(2) .

If A_(alpha)=[(cos alpha,sinalpha),(-sinalpha,cosalpha)] then A_(alpha) A_(beta) is equal to A) A_(alpha beta) B) A_(alpha +beta) C) A_(alpha - beta) D)None of these

If sin^(16) alpha = (1)/(5) , then the value of (1)/( cos^(2) alpha) + (1)/( 1 + sin^(2) alpha) + (2)/( 1 + sin^(4) alpha) + (4)/( 1 + sin^(8) alpha) is

Let a_(1), a_(2),a_(3), cdots , a_(4001) are in A.P. such that (1)/(a_(1)a_(2))+(1)/(a_(2)a_(3))+ cdots + (1)/(a_(4000) a_(4001))= 10 and a_(2)+ a_(4000) = 50 then find the value of |a_(1)-a_(4001)| .