Home
Class 11
MATHS
The number of roots of the equation (1-t...

The number of roots of the equation `(1-tantheta)(1+sin2theta)=1+tantheta` for `theta in[0,2pi]` is

A

3

B

4

C

5

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (sin2theta)/(1+cos2theta)=tantheta

If tan3theta+tantheta=2tan2theta : then theta =

Prove that (cos2theta)/(1+sin2theta)=tan(pi//4-theta)

Prove that sin (3theta)/(1+2cos 2theta)=sin theta .

Prove that (sin2theta)/(1-cos2theta)=cottheta

Given that tantheta=a/b find sin2theta and cos2theta

The number of solutions of cos 2 theta = sin theta in (0, 2pi) is

Prove that cottheta-tantheta=2cot2theta .