Home
Class 11
MATHS
If sinx+cosx=sqrt(y+(1)/(y)),x in[0,pi],...

If `sinx+cosx=sqrt(y+(1)/(y)),x in[0,pi]`,then

A

`x=(pi)/(4),y=1`

B

`y=0`

C

`y=2`

D

`x=(3pi)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If cosx=(2cosy-1)/(2-cosy) , where x,y in(0,pi) , then "tan"(x)/(2)"cot"(y)/(2) is equal to

Prove the following : cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2^,x in (0,pi/4)

If y=sin^(-1)(cosx)+cos^(-1)(sinx) , then find dy/dx .

If y =(sinx+cosecx)^(2)+(cosx+secx)^(2) , then the minimum value of y , AAx inR , is

Choose the correct answer from the bracket. If A=[(cosx,sinx),(-sinx,cosx)] and A(adjA)=k[(1,0),(0,1)] , then the value of k is a)0 b)3 c)1 d)2

If (sinx)/(siny)=(1)/(2),(cosx)/(cosy)=(3)/(2) , where x,y in (0,(pi)/(2)) , then the value of tan (x+y) is equal to

sqrt ((y)/(x)) + sqrt ((x)/(y))=1, then (dy)/(dx) equals

If (sinx)/(cosx)xx(secx)/(cosecx)xx(tanx)/(cotx)=9 , where x in(0,(pi)/(2)) , then the value of x is equal to