Home
Class 11
MATHS
The equation sin^(4)x+cos^(4)x+sin2x+alp...

The equation `sin^(4)x+cos^(4)x+sin2x+alpha=0` is solvable for

A

`-1(1)/(2)lealphale(1)/(2)`

B

`-3lealphale1`

C

`-(3)/(2)lealphale(1)/(2)`

D

`-1lealphale1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the equation [sin x+ cos x]^(1+ sin 2x)=2,-pile x le pi is a) pi/2 b) pi c) pi/4 d) (3 pi)/4

Evaluate int(1)/(sin^(4)x+cos^(4)x)dx . .

The number of solutions to the equation sin^(-1)x +sin^(-1)(1-x)=cos^(-1)x is a)1 b)0 c)2 d)None of these

If A = sin^(2)x +cos^(4)x , then for all real x

The general solution of : Sin2x -sin4x + sin 6x =0