Home
Class 11
MATHS
The solution of the trigonometric equati...

The solution of the trigonometric equation `cos^(2)((pi)/(3)cosx-(8pi)/(3))=1` must be

A

`cos^(-1)(3n+8)`

B

`cos^(-1)(3n-8)`

C

`2npi`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of the trigonometric functions. sin ((31pi)/3)

Evalaute each trigonometric function : "cos"(4pi)/(3)

Find the value of the trigonometric functions. sin (-(11pi)/3)

Evaluate cos^2(pi/8)+cos^2((3pi)/8)

Find the value of the trigonometric functions. tan frac (19pi)(3)

Consider the equation sqrt3sinx-cosx=sqrt2 Prove that the general solution of the given equation x=npi+(-1)^n((pi/4)+(pi/6)) : ninZ

Find the value of the following: 2sin^2(pi/6)+cosec^2((7pi)/3)cos((2pi)/3)