Home
Class 11
MATHS
If the coordinates of a variable point P...

If the coordinates of a variable point P are (`a cos theta, b sin theta`), where `theta` is a variable quantity, then find the locus of P.

Text Solution

Verified by Experts

The correct Answer is:
`(x^2)/(a^2)+(y^2)/(b^2)=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy/dx) , if x=a cos theta, y=a sin theta

Evaluate |[cos theta, -sin theta], [sin theta, cos theta]|

int ((sin theta +cos theta ))/(sqrt(sin 2 theta)) d theta is equal to :

Find the slope of the line joining the points (a cos theta , b sin theta) and (a cos phi, b sin phi)

Find the slope of the normal to the curve x=1-a sin theta, y=b cos ^2 theta at theta=pi/2

Solve sqrt 2+sin theta=cos theta .

If the line joining the points (a cos theta , b sin theta) and (a cos phi, b sin phi) .Prove that the equation of this lines is x/a "cos" (theta + phi)/2 + y/b"sin" (theta + phi)/2 = "cos" (theta -phi)/2

int _(0) ^( pi //2) (cos theta )/( sqrt ( 4 - sin ^(2) theta)) d theta is equal to :

Given that tantheta=a/b find sin2theta and cos2theta