Home
Class 11
MATHS
The locus of the centroid of the triangl...

The locus of the centroid of the triangle whose vertices are (a cost, a sin t), (b sin t, -b cos t), and (1, 0), where t is a parameter, is

A

`(3x - 1)^2 + (3y)^2 = a^2-b^2`

B

`(3x - 1)^2 + (3y)^2 = a^2 + b^2`

C

`(3x + 1)^2 + (3y)^2 = a^2 + b^2`

D

`(3x + 1)^2 + (3y)^2 = a^2- b^2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x= a(cos t +t sin t) and y=a(sin t - t cos t), find (d^2y)/(dx^2)

If x=a(cos t+t sin t) and y=a(sin t-t cos t) , find (d^2y)/(dx^2)

Differentiate w.r.t x the function cos (a cos x+b sin x) , for some constant a and b

The matrix R(t) is defined by R(t) = [(cost , sin t),(-sint,cost)] . Show that R(s) R(t) = R(s+t).