Home
Class 11
MATHS
If it is possible to draw a triangle whi...

If it is possible to draw a triangle which circumscribes the circle `( x - ( alpha - 2 beta))^(2) + ( y - ( alpha + beta))^(2)` = 1 and is inscribed by ` x^(2) +y^(2) - 2x - 4y + 1= 0` then

A

`beta = - 1//3`

B

`beta = 2//3`

C

`alpha = 5//3`

D

`alpha = - 5//2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The foci of the hyperbola (x ^(2))/( cos ^(2) alpha ) -( y ^(2))/( sin ^(2) alpha ) = 1 are

If x^(2) + px + q = 0 has the roots alpha and beta , then the value of (alpha - beta)^(2) is equal to

The locus of the middle point of the chord of the circle x ^(2) + y ^(2) = a ^(2) such that the chords passes through a given point (x _(1) , y _(1)), is : a) x ^(2) + y ^(2) - x x _(1) - y y _(1) =0 b) x ^(2) + y ^(2) = x _(1) ^(2) + y _(1) ^(2) c) x + y = x _(2) + y _(1) d) x + y = x _(1) ^(2) + y _(1) ^(2)

If alpha and beta are the roots of the equation x ^(2) + alpha x + beta = 0, then

If alpha and beta are the roots of x ^(2) - ax + b ^(2) = 0, then alpha ^(2) + beta ^(2) is equal to

If cot alpha cot beta=2 , show that (cos (alpha+beta))/(cos (alpha-beta))=(1)/(3)