Home
Class 11
MATHS
The number of common tangents (s) to the...

The number of common tangents (s) to the circles ` x^(2) + y^(2) + 2x + 8y - 23 = 0 and x^(2) + y^(2) - 4x - 10y - 19 = 0 `

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+4x+6y+4=0

The centre of the ellipse 4x^(2) + y^(2) - 8 x + 4y - 8 = 0 is

If the circles x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0 cut orthogonally, then c + d equals

The locus of a point which moves so that the ratio of the length of the tangents to the circles x^(2)+ y^(2)+ 4x+3 =0 and x^(2)+ y^(2) -6x +5=0 is 2 : 3 is a) 5x^(2) +5y^(2) - 60x +7=0 b) 5x^(2) +5y^(2) +60x -7=0 c) 5x^(2) +5y^(2) -60x -7=0 d) 5x^(2) +5y^(2) +60x +7=0