Home
Class 11
MATHS
If the circle x^(2) + y^(2) + 2x + 2ky ...

If the circle ` x^(2) + y^(2) + 2x + 2ky + 6 = 0 and x^(2) + y^(2) + 2ky + k = 0 ` intersect orthogonally , then k is

A

2 or - 3/2

B

`-2 or -3//2`

C

2 or 3/2

D

`2 or 3//2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the circles x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0 cut orthogonally, then c + d equals

If the circles x^(2) +y^(2) + ax -6y + 4 =0 and x^(2) + y^(2) - 12x + 32 =0 touch externally each other and if the distance between the centres is equal to 5, then the values of a are

The value of k, if the circles 2x ^(2) + 2y ^(2) - 4x + 6y = 3 and x ^(2) + y ^(2) + kx + y =0 cut orthogonally is

The circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+4x+6y+4=0

The circle x ^(2) + y ^(2) + 8y - 4=0, cuts the real circle x ^(2) + y ^(2) + gx + 4=0 orthogonally, if g is :

The length of the tangent drawn from any point on the circle x^(2) + y^(2) + 2f y + lambda = 0 to the circle x^(2) + y^(2) + 2f y + mu = 0 , where mu gt lambda gt 0 , is