Home
Class 11
MATHS
Locus of mid - point of chords of circle...

Locus of mid - point of chords of circle ` x^(2) + y^(2) = 9` from any arbitrary point 'P' on the line x + y = 25 . Locus of mid - point of chord AB is

A

`x^(2) + y^(2) + 2ax + 2by + c^(2) - c = 0 `

B

` x^(2) + y^(2) + 2ax + 2b - c^(2) - c = 0 `

C

`x^(2) + y^(2) + 2ax + 2by + c^(2) + c = 0 `

D

` x^(2) + y^(2) + 2ax + 2by - c^(2) + c = 0 `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of the chord of the circle x^(2) + y^(2) = 81 which is bisected at the point (-2, 3) is

The locus of the middle point of the chord of the circle x ^(2) + y ^(2) = a ^(2) such that the chords passes through a given point (x _(1) , y _(1)), is : a) x ^(2) + y ^(2) - x x _(1) - y y _(1) =0 b) x ^(2) + y ^(2) = x _(1) ^(2) + y _(1) ^(2) c) x + y = x _(2) + y _(1) d) x + y = x _(1) ^(2) + y _(1) ^(2)

Find the distance of the point (- 2,3) from the line x - y = 5.