Home
Class 11
MATHS
The locus of the centers of t he circles...

The locus of the centers of t he circles which cut the circles ` x^(2) + y^(2) + 4x - 6y + 9 = 0 and x^(2) + y^(2) - 5x + 4y - 2 = 0 ` orthogonally is

A

`9x + 10 y - 7 = 0 `

B

` x - y + 2 = 0 `

C

` 9x - 10 y + 11 = 0 `

D

` 9 x + 10 y + 7 = 0 `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If the circles x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0 cut orthogonally, then c + d equals

The value of k, if the circles 2x ^(2) + 2y ^(2) - 4x + 6y = 3 and x ^(2) + y ^(2) + kx + y =0 cut orthogonally is

The circles x^(2)+y^(2)-4x-6y-12=0 and x^(2)+y^(2)+4x+6y+4=0

The circle x ^(2) + y ^(2) + 8y - 4=0, cuts the real circle x ^(2) + y ^(2) + gx + 4=0 orthogonally, if g is :