Home
Class 11
MATHS
Normal at (2 cos theta, sintheta) on th...

Normal at `(2 cos theta, sintheta)` on the ellipse `x^2 + 4y^2 = 4` intersects it again at `(2 cos phi, sin phi)` if `sin phi` =

A

`-cos theta ((7-9 sin^2 theta)/(1+15 sin^2 theta)) `

B

`-sin theta ((7+9 sin^2 theta)/(1+15 sin^2 theta)) `

C

`-sin theta ((7+11 sin^2 theta)/(1-13 sin^2 theta)) `

D

`-cos theta ((3+5 sin^2 theta)/(1+7 sin^2 theta)) `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The product of matrices A = [(cos^(2) theta, cos theta sin theta),(cos theta sin theta , sin^(2) theta)] and sin B = [(cos^(2)phi, cos phi sin phi),(cos phi sin phi, sin^(2) phi)] is a null matrix if theta - phi =

Find the slope of the line joining the points (a cos theta , b sin theta) and (a cos phi, b sin phi)

Solve 7cos^(2)theta+3sin^(2)theta=4 .

Find int( (3 sin phi-2) cosphi)/(5-cos ^2 phi-4 sin phi) d phi

Prove that (cos2theta)/(1+sin2theta)=tan(pi//4-theta)

The parametric form of the ellipse 4 (x +1) ^(2) + (y-1) ^(2) = 4 is a) x = cos theta -1 , y =2 sin theta -1 b) x = 2 cos theta-1 , y =2 sin theta -1 c) x = cos theta - 1, y = 2 sin theta + 1 d) x = cos theta +1, y =2 sin theta +1

If the line joining the points (a cos theta , b sin theta) and (a cos phi, b sin phi) .Prove that the equation of this lines is x/a "cos" (theta + phi)/2 + y/b"sin" (theta + phi)/2 = "cos" (theta -phi)/2

If cos theta+sin theta=sqrt(2) cos theta ,then show that cos theta-sin theta=sqrt(2) sin theta