Home
Class 11
MATHS
If f(x)=(cosx)/((1-sinx)^(1//3)) , then...

If `f(x)=(cosx)/((1-sinx)^(1//3))` , then

A

`lim_(x rarrpi^(-)/2)f(x) =-oo`

B

`lim_(x rarrpi/2)f(x) =oo`

C

`lim_(x rarrpi/2)f(x) =oo`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(2x)^(sinx)cos(t^(3))dt then f'(x) is equal to a) cos(sin^(3)x)cosx-2cos(8x^(3)) b) sin(sin^(3)x)sinx-2sin(8x^(3)) c) cos(cos^(3)x)cosx-2cos(x^(3)) d) cos(sin^(3)x)-cos(8x^(3))

If f(x)=cosx-int_(0)^(x)(x-t)f(t)dt , then f''(x)+f(x) is equal to a) -cosx b) -sinx c) int_(0)^(x)(x-t)f(t)dt d)0

If y=sin^(-1)(cosx)+cos^(-1)(sinx) , then find dy/dx .

If f(x)=log((1+x)/(1-x)),-1ltxlt1 then f((3x+x^(3))/(1+3x^(2)))-f((2x)/(1+x^(2))) is

If f(x)=(log_(e)(1+x^(2)tanx))/(sinx^(3)),xne0 is to be continuous at x=0 , then f(0) must be defined as a)1 b)0 c)1/2 d)-1

Differentiate f(x)=cosx/(1+sinx) with respect to x.

Express tan^-1(frac(cosx)(1-sinx)) in the simplest Form.

Let f(x)= {(cosx,0lexlec),(sinx,c Find the value of c if f is continuous on [0,pi] .

The minimum value of the function f(x)=(sinx)/(sqrt(1-cos^(2))x)+(cosx)/(sqrt(1-sin^(2)x))+(tanx)/(sqrt(sec^(2)x-1))+(cotx)/(sqrt(cosec^(2)x-1)) whenever it is defined is