Home
Class 11
MATHS
lim(xrarr0)(logcosx)/x=...

`lim_(xrarr0)(logcosx)/x`=

A

0

B

1

C

`oo`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evalute lim_(xrarr0)(log(1+x))/sinx

Evalute lim_(xrarr0)(1-cosx)/(x^2)

Evaluate: lim_(xrarr0) (cos9x-cos5x)/(sin17x-sin3x)

Evaluate lim_(x rarr 0) (cos x)/(pi - x)

If lim_(xrarr0)(f(x))/(x^2)=k ne 0 then lim_(xrarr1)f(x) =……….

The value of lim_(xrarr0)(sinx)/x is ……

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

Evalute lim_(xrarr0)(ax+ x cosx)/(b sin x)

The value of lim_(xrarr0)(sin 5x)/(5x) is ………