Home
Class 11
MATHS
lim(xrarre)(lnx-1)/(|x-e|) is equal to...

`lim_(xrarre)(lnx-1)/(|x-e|)` is equal to

A

`1//e`

B

`-1//e`

C

e

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

lim_(xrarr0)(e^(sinx)-1)/x

lim_(xrarr0)(sqrt(1+x)-1)/x

lim_(xrarr0)(tan x)/x =………

Evalute lim_(xrarr1)(x^3-1)/(x-1)

If f(x)= sqrt((x-sin x)/(x+cos^(2)x)) , then lim_(x rarr oo) f(x) is equal to a)1 b)2 c) (1)/(2) d)0

lim_(xrarr0^(-))""(1)/(3-2^(1//x)) is equal to

The value of lim_(xrarr0)(sin 5x)/(5x) is ………