Home
Class 11
MATHS
lim(x rarrpi//2) [x tanx-(pi/2)secx] is ...

`lim_(x rarrpi//2) [x tanx-(pi/2)secx]` is equal to

A

1

B

`-1`

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr2)[x] =……...

Evalute lim_(xrarrpi/2)(tan2x)/(x-pi/2)

lim_(x rarr 2) (x^5 - 32)/(x - 2)

lim_(x rarr 0) ((1 + 2x)^(10) - 1)/(x) is equal to a)5 b)10 c)15 d)20

Evaluate lim_(x rarr pi/2) (tan 2x)/(x - pi/2)

lim_(xrarrpi/4)(tan(pi/4-x))/((pi/4-x))

If x in((pi)/(2),pi) , then (secx-1)/(secx+1) is equal to a) (cosecx+cotx)^(2) b) (sinx-cosx)^(2) c) (cosecx-cotx)^(2) d) (secx+tanx)^(2)

If f (x)= int _(1) ^(x) sin ^(2) ((t)/(2)) dt, then the value of lim _(x to 0) (f (pi +x ) -f (pi))/(x) is equal to

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

Evaluate lim_(x rarr pi) (x - (22)/7)