Home
Class 11
MATHS
lim(x rarroo)(x(logx)^3)/(1+x+x^2) is...

`lim_(x rarroo)(x(logx)^3)/(1+x+x^2)` is

A

0

B

`-1`

C

1

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr 0)(1-x-e^(x))/(x^(2)) =

lim_(x rarr oo)((x^(3))/(3x^(2) - 4) - (x^(2))/(3x+2)) is equal to

lim_(x rarr oo) (3x^(3) + 2x^(2) - 7x + 9)/(4x^(3) + 9x -2)

lim_(x rarr 2) (x^5 - 32)/(x - 2)

If the function f(x) satisfies lim_(x rarr 1) (f(x)-2)/(x^(2)-1) = pi , evaluate lim_(x rarr 1) f(x)

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to