Home
Class 11
MATHS
lim(xrarr0)(e^x-e^(-x)-2x)/(x - sinx) is...

`lim_(xrarr0)(e^x-e^(-x)-2x)/(x - sinx)` is equal to

A

`1//2`

B

1

C

2

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(e^(sinx)-1)/x

lim_(x rarr 0)(1-x-e^(x))/(x^(2)) =

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

Evalute lim_(xrarr0)(e^x+e^-x-2)/x^2

Evalute lim_(xrarr0)(e^(3x)-1)/(x)

Compute: lim_(xrarr0)(e^(3x)-1)/x

lim_(xrarr0)(sqrt(1+x)-1)/x

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to