Home
Class 11
MATHS
lim(xrarr0)(sqrt(1-cos2x))/(sqrt2x)is eq...

`lim_(xrarr0)(sqrt(1-cos2x))/(sqrt2x)`is equal to

A

1

B

`-1`

C

zero

D

does not exist

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(sqrt(1+x)-1)/x

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

underset(xrarr0)lim (sqrt(2+x)-sqrt(2-x))/(x) is equal to

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

int(secxdx)/(sqrt(cos2x)) is equal to

lim_(x rarr 0)((x)/(sqrt(1+x) + sqrt(1-x))) is equal to

lim_(xto-oo)(2x-1)/(sqrt(x^(2)+2x+1)) is equal to a)2 b)-2 c)1 d)-1

Evalute lim_(xrarr0)(1-cosx)/(x^2)

lim_(xrarr0)(e^(sinx)-1)/x