Home
Class 11
MATHS
Let f(2) = 4 and f'(2) = 4 . Then lim...

Let f(2) = 4 and f'(2) = 4 . Then
`lim_(xrarr2)(xf(2)-2f(x))/(x-2)` is

A

2

B

`-2`

C

`-4`

D

3

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(xrarr2)(x^4-4x^2)/(x^2-4)

Evalute lim_(xrarr2)(x^2-5x+6)/(x^2-4)

Evalute lim_(xrarr2)(3x^2-x-10)/(x^2-4)

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

Evaluate : lim_(xrarr2)(x^3-4x^2+4x)/(x^2-4)

Let f(x) = x^2 - 2x + 3 . Then find f (f (x) )

Find lim_(xrarr0)(sin 4x)/(sin2x)

If f is differentiable at x=1, then lim_(x rarr 1) (x^(2) f(1)-f(x))/(x-1) is

If f(x)={(x-absx,x 2):} Find lim_(xrarr2)f(x)

Evalute lim_(xrarr2)(x^2-4)/(sqrt(3x-2)-sqrt(x+2))