Home
Class 11
MATHS
Let f: Rrarr R be a positive, increasing...

Let `f: Rrarr R` be a positive, increasing function with `lim_(xrarroo)(f(3x))/(f(x) )=1 `Then `lim_(xrarroo)(f(2x))/(f(x))` is equal to

A

3

B

1

C

`2/3`

D

`3/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr0)(f(x))/(x^2)=k ne 0 then lim_(xrarr1)f(x) =……….

If f(x)=3x^(2)-7x+5 , then lim_(xrarr0)(f(x)-f(0))/(x) is equal to

If the function f(x) satisfies lim_(x rarr 1) (f(x)-2)/(x^(2)-1) = pi , evaluate lim_(x rarr 1) f(x)

If f(x)={(x-absx,x 2):} Find lim_(xrarr2)f(x)

Consider the function f(x)={(sinx/x, x Find lim_(xrarr0)f(x)

If fthe function f(x) satisfies lim_(x rarr 1) (f(x) - 2)/(x^2 - 1) = pi , evaluate lim_(x rarr 1) f(x).

If f: R rarr R , f(f(x)) = (f(x))^(2) , then f(f(f(x) ))is equal to

Find lim_(x rarr 5) f(x) , where f(x) = |x| -5