Home
Class 11
MATHS
If x^(y)=e^(x-y), prove that, (dy)/(dx)=...

If `x^(y)=e^(x-y)`, prove that, `(dy)/(dx)=(logx)/((1+logx)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`=(logx)/((1+logx)^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

If y^x=e^(y-x), prove that dy/dx=(1+logy)^2/logy .

If e^(x-y)=x^y then prove that dy/dx=logx/[logex]^2

Find (dy)/(dx) of y=(1-logx)/(1+logx)

If x^(y) = e^(2(x-y)) , then (dy)/(dx) is equal to

Evaluate int(logx)/((1+logx)^(2))dx .

If xsqrt(1+y)=sqrtx , prove that dy/dx= -1/(x^2)

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=(dy/dx)^2

If e^y(x+1)=1 , show that (d^2y)/(dx^2)=(dy/dx)^2

Find (dy)/(dx) of y=sin(logx)