Home
Class 12
MATHS
The product of matrices A = [(cos^(2) th...

The product of matrices A = `[(cos^(2) theta, cos theta sin theta),(cos theta sin theta , sin^(2) theta)] and sin B = [(cos^(2)phi, cos phi sin phi),(cos phi sin phi, sin^(2) phi)]` is a null matrix if `theta - phi =`

A

`2 n pi, n in Z`

B

`n (pi)/(2), n in Z`

C

`(2n+ 1) (pi)/(2) , n in Z`

D

`n pi, n in Z`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate |[cos theta, -sin theta], [sin theta, cos theta]|

Prove that sin (3theta)/(1+2cos 2theta)=sin theta .

Prove that (sin2theta)/(1+cos2theta)=tantheta

Solve sqrt 2+sin theta=cos theta .

Prove that (sin2theta)/(1-cos2theta)=cottheta

Prove that (1+sintheta-cos theta)/(1+sin theta+costheta)=tantheta//2

int ((sin theta +cos theta ))/(sqrt(sin 2 theta)) d theta is equal to :

If cos theta+sin theta=sqrt(2) cos theta ,then show that cos theta-sin theta=sqrt(2) sin theta

Prove that (1+sin2theta+cos2theta)/(1+sin2theta-cos2theta)=cottheta