Home
Class 12
MATHS
If the matrices A, B (A + B) are non - s...

If the matrices A, B (A + B) are non - singular, then `[A(A+B)^(-1) B]^(-1)`. a)`A^(-1)B^(-1)` b)`B^(-1)+A^(-1)` c)`B^(-1)A^(-1)` d)None of these

A

`A^(-1)B^(-1)`

B

`B^(-1)+A^(-1)`

C

`B^(-1)A^(-1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

For the matrices A=[[-1, 2],[ 3, 4]] and B=[[2, 5],[ 3, 6]] , verify that (AB)^(-1)=B^(-1) A^-1?

Let A=[[3 , 7],[ 2, 5]] and B=[[6 , 8],[ 7, 9]] Verify that (A B)^(-1)=B^(-1) A^(-1)

If A and B are symmetric non singular matrices, AB = BA and A^(-1) B^(-1) exist, then prove that A^(-1)B^(-1) is symmetric.

If A=[[2, 3],[ 1, -4]] and B=[[1, -2],[ -1, 3]] , then verify that (A B)^(-1)=B^(-1) A^(-1)

If A is an 3 xx 3 non - singular matrix such that AA'= A'A and B = A^(-1) A' , then BB' equals a)I + B b)I c) B^(-1) d) (B^(-1))

Prove that tan ^(-1) ((a-b)/(1+a b))+tan ^(-1)(( b-c)/(1+b c))+tan ^(-1) ((c-a)/(1+c a))=0

If int_(0)^(1)(e^(t)dt)/(t+1)=a , then int_(b-1)^(b)(e^(-t)dt)/(t-b-1) is equal to a) ae^(-b) b) -ae^(-b) c) be^(-b) d)None of these

If A and B are two square matrices such that B = - A^(-1) BA then (A + B)^(2) is equal to

If ab gt -1, bc gt -1 and ca gt -1 , then the value of cot^(-1) ((ab+1)/(a-b) ) + cot^(-1) ((bc+1)/(b-c) ) + cot^(-1) ((ca+1)/( c-a)) is a) -1 b) cot^(-1) "" (a+b+c) c) cot^(-1) ("abc") d)0

If a,b,c are non-zero real numbers, then |(1,ab,(1)/(a)+(1)/(b)),(1,bc,(1)/(b)+(1)/(c)),(1,ca,(1)/(c)+(1)/(a))| is a)0 b)bc+ca+ab c) a^(-1)+b^(-1)+c^(-1) d)None of these