Home
Class 12
MATHS
If Z is an idempotent matrix, then (I + ...

If Z is an idempotent matrix, then `(I + Z)^(n)` a)`I + 2^(n)Z` b)`I+ (2^(n) - 1) Z` c)`I - (2^(n) - 1) Z` d)None of these

A

`I + 2^(n)Z`

B

`I+ (2^(n) - 1) Z`

C

`I - (2^(n) - 1) Z`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Matrix A such that A^(2) = 2A - I , where I is the identity matrix, then for n ge 2, A^(n) is equal to a) 2^(n - 1) A - (n - 1) I b) 2^(n - 1)A - I c) n A - (n - 1) I d) nA - I

If z ^(2) + z + 1 = 0, where z is a complex number, then the value of (z + (1)/(z)) ^(2) + (z ^(2) + (1)/( z ^(2))) ^(2) + (z ^(3) + (1)/(z ^(3))) ^(2) +...( z ^(6) + (1)/(z ^(6)) )^(2) is

If z=1+i , then the argument of z^(2)e^(z-i) is

If (2 z _(1))/(3z _(2)) is a purely imaginary, then | ( z _(1) - z _(2))/( z _(1) + z _(2))| is:

If z = (2-i)/(i) , then R e(z^(2)) + I m(z^(2)) is equal to a)1 b)-1 c)2 d)-2

If the complex numbers z _(1) , z _(2) and z _(3) denote the vertices of an isosceles triangle, right angled at z _(1), then (z _(1) - z _(2)) ^(2) + (z _(1) - z _(3)) ^(2) is equal to A)0 B) (z _(2) + z _(3)) ^(2) C)2 D)3

For two unimodular complex numbers Z_(1) and Z_(2), [(bar(z_(1)),-z_(2)),(bar(z_(2)),z_(1))]^(-1)[(z_(1),z_(2)),(-bar(z_(2)),bar(z_(1)))]^(-1) is equal to a) [(z_(1),z_(2)),(bar(z)_(1),bar(z)_(2))] b) [(1,0),(0,1)] c) [(1//2,0),(0,1//2)] d)None of these

If z = i^( 9) + i^( 19) , then z is equal to

If z= r (cos theta + i sin theta) , then the value of (z)/(bar(z)) + (bar(z))/(z) is

If z_(1) and z_(2) are non -zero complex numbers, then show that (z_(1) z_(2))^(-1)=z_(1)^(-1) z_(2)^(-1)