Home
Class 12
MATHS
If A = (1)/(3) [(1,2,2),(2,1,-2),(a,2,b)...

If `A = (1)/(3) [(1,2,2),(2,1,-2),(a,2,b)]` is an orthogonal matrix, then a)a = - 2, b = - 1 b)a = 2, b = 1 c)a = 2, b = - 1 d)a = - 2, b = 1

A

a = - 2, b = - 1

B

a = 2, b = 1

C

a = 2, b = - 1

D

a = - 2, b = 1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If the derivative of the function f(x) is every where continuous and is given by f(x)={{:(bx^(2)+ax+4,,, x ge 1), (ax^(2)+b, ,, x lt -1):}, then : a)a = 2, b = -3 b)a = 3, b = 2 c)a = -2, b = -3 d)a = -3, b= -2

A = [(1,2,3),(1,2,3),(-1,-2,-3)] then A is a nilpotent matrix of index a)3 b)2 c)4 d)5

If A = [(1,2,2),(2,1,-2),(a,2,b)] is a matrix satisfying A A^(T) = 9I_(3) , then the values of a and b are respectively A)1, 2 B) -1, 2 C) -1, -2 D) -2, -1

The value of a,b,c if [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal are a) a= pm (1)/(sqrt(2)), b = pm (1)/(sqrt(6)) , c = pm (1)/(sqrt(3)) b) a = pm (1)/(sqrt(2)), b = pm (1)/(sqrt(3)), = pm (1)/(sqrt(6)) c) a = pm (1)/(sqrt(6)) , b = pm (1)/(sqrt(2)), c = pm (1)/(sqrt(3)) d) a = pm (1)/(sqrt(3)) , b = pm (1)/(sqrt(2)) , c = pm (1)/(sqrt(6))

If intsqrt(x)/(x+1)dx=Asqrt(x)+Btan^(-1)sqrt(x)+c , then : a)A = 1, B = 1 b) A=1,B=2 c) A = 2, B = 2 d)A = 2, B = -2

int(dx)/(5+4cosx)=atan^(-1)(b" tan"(x)/(2))+C , then a) a=(2)/(3),b=-1/3 b) a=2/3,b=1/3 c) a=-2/3,b=1/3 d) a=-2/3,b=-1/3

If A= [(2,-1),(3,1)] and B = [(1,4),(7,2)] ,find 3A - 2B.

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

If A=[(2,-1),(3,4),(1,0)] , B=[(-1,3),(5,0),(2,-2)] C=[(3,1,-2),(2,0,5)] , then Find (A+B)C.

The base angle of triangle are 22 (1^(@))/(2) and 112 (1^(@))/(2). If b is the base and h is the height of the triangle, then : a) b=2h b)b=3h c) b (1 + sqrt3) h d) b = (2 + sqrt3) h