Home
Class 12
MATHS
The value of a,b,c if [(0,2b,c),(a,b,-c)...

The value of a,b,c if `[(0,2b,c),(a,b,-c),(a,-b,c)]` is orthogonal are
a)`a= pm (1)/(sqrt(2)), b = pm (1)/(sqrt(6)) , c = pm (1)/(sqrt(3))` b)`a = pm (1)/(sqrt(2)), b = pm (1)/(sqrt(3)), = pm (1)/(sqrt(6))` c)`a = pm (1)/(sqrt(6)) , b = pm (1)/(sqrt(2)), c = pm (1)/(sqrt(3))` d)`a = pm (1)/(sqrt(3)) , b = pm (1)/(sqrt(2)) , c = pm (1)/(sqrt(6))`

A

`a= pm (1)/(sqrt(2)), b = pm (1)/(sqrt(6)) , c = pm (1)/(sqrt(3))`

B

`a = pm (1)/(sqrt(2)), b = pm (1)/(sqrt(3)), = pm (1)/(sqrt(6))`

C

`a = pm (1)/(sqrt(6)) , b = pm (1)/(sqrt(2)), c = pm (1)/(sqrt(3))`

D

`a = pm (1)/(sqrt(3)) , b = pm (1)/(sqrt(2)) , c = pm (1)/(sqrt(6))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of "sin"(31)/(3)pi is a) (sqrt3)/(2) b) (1)/(sqrt2) c) (-sqrt3)/(2) d) (-1)/(sqrt2)

If tan^(-1)2x+tan^(-1)3x=(pi)/(2) , then the value of x is equal to a) (1)/(sqrt(6)) b) (1)/(6) c) (1)/(sqrt(3)) d) (1)/(sqrt(2))

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i

int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx is equal to a) (1)/(sqrt(3))tan^(-1)((x)/(sqrt(3)(x+1))) b) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(3(x+1)))) c) (2)/(sqrt(3))tan^(-1)((x)/(sqrt(x+1))) d)None of these

int(dx)/(4sin^(2)x+3cos^(2)x) is equal to a) (sqrt(3))/(4)tan^(-1)""((2tanx)/(sqrt(3)))+C b) (1)/(2sqrt(3))tan^(-1)""((tanx)/(sqrt(3)))+C c) (2)/(sqrt(3))tan^(-1)""((2tanx)/(sqrt(3)))+C d) (1)/(2sqrt(3))tan^(-1)""((2tanx)/(sqrt(3)))+C

The value of tan^(-1)((sqrt(3))/(2))+tan^(-1)((1)/(sqrt(3))) is equal to a) tan^(-1)((5)/(sqrt(3))) b) tan^(-1)((2)/(sqrt(3))) c) tan^(-1)((1)/(2)) d) tan^(-1)((1)/(3sqrt(3)))

The foci of the ellipse 4x^(2) + 9y^(2) = 1 are a) (pm(sqrt(3))/(2),0) b) (pm(sqrt(5))/(2),0) c) (pm(sqrt(5))/(3),0) d) (pm(sqrt(5))/(6),0)

If a,b,c, are in A.P then prove that (1)/(sqrt(b)+sqrt(c)),(1)/(sqrt(c)+sqrt(a)),(1)/(sqrt(a)+sqrt(b)) are in A.P.

The minimum values of sin x + cos x is a) sqrt2 b) -sqrt2 c) (1)/(sqrt2) d) - (1)/(sqrt2)