Home
Class 12
MATHS
|A-B|!=0,A^(4)=B^(4),C^(3)A=C^(3)B,B^(3)...

`|A-B|!=0,A^(4)=B^(4),C^(3)A=C^(3)B,B^(3)A=A^(3)B` then `|A^(3) + B^(3) +C^(3)| =` a)0 b)1 c)`|A|^(3)` d)63

A

0

B

1

C

`|A|^(3)`

D

63

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are in A.P. then a^(3) +c^(3) - 8b^(3) is equal to

A = [(1,2,3),(1,2,3),(-1,-2,-3)] then A is a nilpotent matrix of index a)3 b)2 c)4 d)5

In a DeltaABC,"if "(sqrt(3)-1)a=2b,A=3B, then C is a) 60^(@) b) 120^(@) c) 30^(@) d) 45^(@)

lim_(k rarr oo) ((1^(3) + 2^(3) + 3^(3)+.......+k^(3))/(k^(4))) is equal to a)0 b)2 c) (1)/(3) d) (1)/(4)

If omega is a complex cube root of unity, then value of Delta=|(a_(1)+b_(1)omega,a_(1)omega^(2)+b_(1),c_(1)+b_(1)omega),(a_(2)+b_(2)omega,a_(2)omega^(2)+b_(2),c_(2)+b_(2)omega),(a_(3)+b_(3)omega,a_(3)omega^(2)+b_(3),c_(3)+b_(3)omega)| is a)0 b)-1 c)2 d)None of these

The value of the determinant |(bc,ac,ab),(a,b,c),(a^(3),b^(3),c^(3))| is a)(a + b + c) b)a + b + c -ab c) (a^(2) - b^(2))(b^(2) - c^(2)) (c^(2) - a^(2)) d) a^2+b^2+c^2

If Delta_(1)|(a_(1)^(2)+b_(1)+c_(1),a_(1)a_(2)+b_(2)+c_(2),a_(1)a_(3)+b_(3)+c_(3)),(b_(1)b_(2)+c_(1),b_(2)^(2)+c_(2),b_(2)b_(3)+c_(3)),(c_(3)c_(1),c_(3)c_(2),c_(3)^(2))|andDelta_(2)=|(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| then Delta_(1) // Delta_(2) is equal to a) a_(1)b_(2)c_(3) b) a_(1)a_(2)a_(3) c) a_(3)b_(2)c_(1) d) a_(1)b_(1)c_(1) +a_(2)b_(2)c_(2)+a_(3)b_(3)c_(3)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c