Home
Class 12
MATHS
If A is non - singualr and (A - 2I) (A -...

If A is non - singualr and (A - 2I) (A - 4I) = O, then `(1)/(6) A + (4)/(3) A^(1) = `

A

O

B

I

C

2I

D

6I

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If A is matrix such that A^(2) +A + 2I = O then which of the following is not true ?a)A is symmetric b)A is non - singular c) |A| ne O d) A^(-1) = - (1)/(2) (A+ I)

Prove that (1 + i)^4 = -4

Let z_(1) = 3 + 4i and z_(2) = - 1 + 2i . Then, |z_(1) + z_(2)|^(2) - 2(|z_(1)|^(2) + |z_(2)|^(2)) is equal to

The value of (1)/(i) + (1)/(i^2) + (1)/(i^3) + …. + (1)/(i^(102) ) is

If A^(3) = O , then I + A + A^(2) equals a)I - A b) (I + A^(-1)) c) (I - A)^(-1) d)none of these

The length and breadth of some rectangles are given below. Calculate their areas. i) 4 (1)/(2) cm, 3 (1)/(4) cm ii). 6 (3)/(4) m, 5 (1)/(3) m iii) 1 (1)/(3) m, (3)/(4) m

Calculate the following . Write them as products. i) (1)/(4) of (1)/(2) ii) (1)/(2) of (1)/(4) iii) (1)/(5) of (1)/(3) iv) (1)/(3) of (1)/(5) v) (1)/(6) . of (1)/(3) vi) (1)/(3) of (1)/(6)

Given that x, y in R . Solve (x)/(1+2i) + (y)/(3+2i)= (5+6i)/(8i-1)

If |sqrt2z- 3+2i|= |z| |sin ((pi)/(4) + arg z_(1)) + i cos((3pi)/(4) - arg z_(1))| , where z_(1)=1+ (1)/(sqrt3)i , then locus of z is