Home
Class 12
MATHS
For each real x, - 1 lt x lt 1. Let A(x)...

For each real x, - 1 `lt x lt 1`. Let A(x) be the matrix `(1-x)^(-1)[(1,-x),(-x,1)]andz=(x+y)/(1+xy)`, then

A

A(z) = A(x) A(y)

B

A(z)=A(x)-A(y)

C

A(z)=A(x)+A(y)

D

`A(z)=A(x)[A(y)]^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) = (x+1)^2 -1, x ge -1 ). Then the set {x: f(x) = f^(-1) (x)} is

If x lt 0 , then prove that cos^(-1)x=pi+tan^(-1)""(sqrt(1-x^2))/x

Prove that In (1 + x) lt "x for x" gt 0

If y=e^(acos^-1x) , then show that (1-x^2)y_2-xy_1-a^2y=0

If y=sin^(-1)x/sqrt(1-x^2) prove that (1-x^2)y_1-xy=1

Evaluate underset (x rarr 1)Lt (x^4-1)/(x-1)