Home
Class 12
MATHS
Prove that |(x^(2),x^(2)-(y-z)^(2),yz),...

Prove that `|(x^(2),x^(2)-(y-z)^(2),yz),(y^(2),y^(2)-(z-x)^(2),zx),(z^(2),z^(2)-(x-y)^(2),xy)|=(x-y)(y-z)(z-x)(x+y+z)(x^(2) + y^(2) + z^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=xyz prove that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2))(2y)/(1-y^(2))(2z)/(1-z^(2)) .

If |(x^(n),x^(n+2),x^(n+3)),(y^(n),y^(n+2),y^(n+3)),(z^(n),z^(n+2),z^(n+3))|=(x-y)(y-z)(z-x)((1)/(x)+(1)/(y)+(1)/(z)) then value of n is a)-1 b)-2 c)1 d)2

Prove that |(1,x,x^3),(1,y,y^3),(1,z,z^3)|=(x+y+z)(x-y)(y-z)(z-y) .

Delta_(1) = |(y^(5)z^(6) (z^(3)-y^(3)),x^(4)z^(6)(x^(3)-z^(3)),x^(4)y^(5)(y^(3)-x^(3))),(y^(2)z^(3)(y^(6)-z^(6)),xz^(3)(z^(6)-x^(6)),xy^(2)(x^(6)-y^(6))),(y^(2)z^(3)(z^(3)-y^(3)),xz^(3)(x^(3)-z^(3)),xy^(2)(y^(3)-x^(3)))| and Delta_(2)=|(x,y^(2),z^(3)),(x^(4),y^(5),z^(6)),(x^(7), y^(8),z^(9))| Then Delta_(1) Delta_(2) is equal to a) Delta_(2)^(2) b) Delta_(2)^(3) c) Delta_(2)^(4) d)None of these

Prove that abs[[1,x,x^2],[1,y,y^2],[1,z,z^2]]=(x-y)(y-z)(z-x)

The equation of the sphere whose centre is (6, -1, 2) and which touches the plane 2x-y+2z-2=0 , is :a) x^(2)+y^(2)+z^(2)-12x+12y-4z-16=0 b) x^(2)+y^(2)+z^(2)-12x+2y-4z=0 c) x^(2)+y^(2)+z^(2)-12x+2y-4z+16=0 d) x^(2)+y^(2)+z^(2)-12x+2y-4z+6=0

Given Delta=|(x,x^2,1+px^3),(y,y^2,1+py^3),(z,z^2,1+pz^3)| Prove that Delta=(1+pxyz)(x-y)(y-z)(z-x) .

By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)