Home
Class 12
MATHS
Prove that |(a,b+c,a^(2)),(b,c+a,b^(2)),...

Prove that `|(a,b+c,a^(2)),(b,c+a,b^(2)),(c,a+b,c^(2))|=-(a+b+c)xx(a-b)(b-c)(c-a).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that Prove that Delta=|(1,1,1),(a,b,c),(bc+a^(2),ac+b^(2),ab+c^(2))|=2(a-b)(b-c)(c-a)

Prove that |(b+c,a-b,a),(c+a,b-c,b),(a+b,c-a,c)|=3abc-a^(3)-b^(3)-c^(3)

The value of the determinant |(ka,k^(2)+a^(2),1),(kb,k^(2)+b^(2),1),(kc,k^(2)+c^(2),1)| is a)k(a+b)(b+c)(c+a) b)kabc (a^(2)+b^(2)+c^(2)) c)k(a-b) (b -c) (c - a) d)k(a + b - c) (b + c - a) (c + a - b)

|(1,a,b+c),(1,b,c+a),(1,c,a+b)| =

Show that |(a,b-c,c+b),(a+c,b,c-a),(a-b,b+a,c)|=(a+b+c)(a^(2)+b^(2)+c^(2))

Show that |(3a,-a+b,-a+c),(-b+a,3b,-b+c),(-c+a,-c+b,3c)|=3(a+b+c)(ab+bc+ca)

Prove that b^(2)c^(2) + c^(2)a^(2) + a^(2) b^(2) gt abc (a+b+c)

Prove that |[1 , a , a^3],[ 1, b, b^3],[ 1, c, c^3]|=(a-b)(b-c)(c-a)(a+b+c)

using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a) .

prove |[1, b c, a(b+c)],[ 1, c a, b(c+a)],[ 1, a b, c(a+b)]|=0