Home
Class 12
MATHS
Prove that Prove that Delta=|(1,1,1),(...

Prove that
Prove that `Delta=|(1,1,1),(a,b,c),(bc+a^(2),ac+b^(2),ab+c^(2))|=2(a-b)(b-c)(c-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |(a,b+c,a^(2)),(b,c+a,b^(2)),(c,a+b,c^(2))|=-(a+b+c)xx(a-b)(b-c)(c-a).

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

using properties of determinants, prove that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a) .

Using properties of determinants prove the following. abs[[1,1,1],[a,b,c],[a^3,b^3,c^3]]=(a-b)(b-c)(c-a)(a+b+c)

The value of the determinant |(bc,ac,ab),(a,b,c),(a^(3),b^(3),c^(3))| is a)(a + b + c) b)a + b + c -ab c) (a^(2) - b^(2))(b^(2) - c^(2)) (c^(2) - a^(2)) d) a^2+b^2+c^2

Prove that tan((A-B)/2)= (a-b)/(a+b)cot frac(c)(2)

Using properties of determinants prove the following. abs[[1,a,bc],[1,b,ca],[1,c,ab]]=(a-b)(b-c)(c-a)

If a,b, and c are non - zero real numbers, then Delta=|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b)| is equal to a) abc b) a^(2)b^(2)c^(2) c)bc+ca+ab d)None of these

Show that abs[[1,a,a^2],[1,b,b^2],[1,c,c^2]]=(a-b)(b-c)(c-a)

Show that abs [[1,a,bc],[1,b,ac],[1,c,ab]]=(a-b)(b-c)(c-a)