Home
Class 12
MATHS
If p+q+r = a + b + c = 0, then the deter...

If p+q+r = a + b + c = 0, then the determinant `Delta=|(pa,qb,rc),(qc,ra,pb),(rb,pc,qa)|` equals a)0 b)1 c)pa + qb + rc d)None of these

A

0

B

1

C

pa + qb + rc

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Determinant Delta=|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)| is divisible by a)abc b) x^(2) c) x^(3) d)None of these

If A,B,C are the angle of a triangle then the value of determinant |(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C)| is a) pi b) 2lambda c)0 d)None of these

If a,b, and c are non - zero real numbers, then Delta=|(b^(2)c^(2),bc,b+c),(c^(2)a^(2),ca,c+a),(a^(2)b^(2),ab,a+b)| is equal to a) abc b) a^(2)b^(2)c^(2) c)bc+ca+ab d)None of these

The determinant Delta=|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,c)| is equal to zero, if a)a,b,c are in A.P. b)a,b,c are in G.P. c)a,b,c are in H.P. d) ax^(2) + bx + c = 0

If a,b,c , in R , then find the number of real roots of the equation Delta = |(x,c,-b),(-c,x,a),(b,-a,x)|=0

If alpha, beta are the roots of the equation ax ^(2) + bx + c =0, then the value of (1)/( a alpha + b) + (1)/( a beta + b) equals to : a) (ac)/(b) b) 1 c) (ab)/(c) d) (b)/(ac)

If a !=p, b !=q, c!=r and |(p,b,c),(a,q,c),(a,b,r)| = 0 then the value of (p)/(p-a)+(q)/(q-b)+(r)/(r-c) is equal to a)-1 b)1 c)-2 d)2

Consider the determinant Delta =|[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ba]| Without expanding, prove that Delta=0

Let A= [(0,alpha),(0,0)] and (A + I)^(50) - 50A = [(a,b),(c,d)] then the value of a + b + c + d is a)2 b)1 c)4 d)None of these