Home
Class 12
MATHS
If A,B,C are the angle of a triangle the...

If A,B,C are the angle of a triangle then the value of determinant `|(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C)|` is a)`pi` b)`2lambda` c)0 d)None of these

A

`pi`

B

`2lambda`

C

0

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If A,B, and C are the angles of a triangle and |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinC+sin^(2)C)|=0, then triangle ABC is a)Isosceles b)Equilateral c)Right - angled d)None of these

The value of the determinant |(sin10,-cos10),(sin50,cos50)| is a)-1 b) sqrt3/2 c) 1/2 d)-2

If sinA=sinB,cosA=cosB , then the value of A in terms of B is

Prove that sin(A+B)sin(A-B)=sin^2A-sin^2B

In triangle ABC , prove that sinA=sin(B+C)

Determinant Delta=|(a^(2)+x,ab,ac),(ab,b^(2)+x,bc),(ac,bc,c^(2)+x)| is divisible by a)abc b) x^(2) c) x^(3) d)None of these

IF tan A and tan B are the roots of abx^2-c^2x+ab=0 where a,b,c are the sides of triangleABC then find sin^2A+sin^2B+sin^2C